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Abstract

Novelty detection is often treated as a one-class classification problem: how to
segment a data set of examples from everything else that would be considered novel
or abnormal. Almost all existing novelty detection techniques, however, suffer from
diminished performance when the number of less relevant, redundant or noisy features
increases, as often the case with high-dimensional feature spaces. Additionally, many
of these algorithms are not suited for online use, a trait that is highly desirable for many
robotic applications. We present a novelty detection algorithm that is able to address
this sensitivity to high feature dimensionality by utilizing prior class information within
the training set. Additionally, our anytime algorithm is well suited for online use when
a constantly adjusting environmental model is beneficial. We apply this algorithm to
online detection of novel perception system input on an outdoor mobile robot and argue
how such abilities could be key in increasing the real-world applications and impact of
mobile robotics1.

1Most figures in this paper are best viewed in color.
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1 Introduction

Many autonomous unmanned ground vehicles (UGVs) have advanced to a level where
they are competent and reliable a high percentage of the time in many environments
[1, 2, 3]. Most of these systems, however, are heavily engineered forthe domains they
are intended to operate in. Any deviation from these domains often results in sub-
optimal performance or even complete failure. Given the cost of such systems and
the importance of safety and reliability in many of the tasks that they are intended for,
even a relatively rare rate of failure is unacceptable. In many domains that are prime
candidates for mobile robotic applications such as space exploration, transportation,
military reconnaissance, and agricultural tasks, the risk of catastrophic failure, however
small, is a primary reason why autonomous systems are still under-utilized despite
already demonstrating impressive abilities.

One approach to addressing this limitation is for a UGV to be able to identify
situations that it is likely untrained to handlebefore it experiences a major failure.
This problem therefore becomes one of novelty detection: how a robot can identify
when perception system inputs differ from prior inputs seen during training or previous
operation. With this ability, the system can either avoid novel locations to minimize
risk or stop and enlist human help via supervisory control or tele-operation (see Figure
1).

Two common limitations of novelty detection systems are particularly relevant to
the mobile robotics domain. Autonomous systems often need to learn from their expe-
riences and continually adjust their models of what is normal and what is novel. For
example, if human feedback were to confirm that a certain type of environment selected
as novel is actually safe to handle with the existing autonomy system or demonstrate to
the system the proper way to handle the situation (as in [4]), the model no longer needs
to identify such inputs as novel. Most novelty detection approaches, however, build a
model of the normal set of examples a priori in batch in order to detect novel examples
in the future but are unable to update that model online without retraining.

Furthermore, existing novelty detection techniques see diminished performance
when using high-dimensional feature spaces, particularly when some features are less
relevant, redundant, or noisy. These qualities are particularly common in features from
many UGV perception systems due to the variety of sensors and uncertainty about how
these features relate to novelty. For example, the relevance of camera-based features
such as color and texture of an area of the environment to novelty (or similarity metrics
in general) is difficult to understand as subsets of the features could contain redun-
dant information or be mostly irrelevant. It is therefore important for novelty detection
techniques to be resilient to such feature properties.

We present an online approach that addresses these common problems with nov-
elty detection techniques. We approach the problem of novelty detection as one of
online density estimation where seen examples generate an influence of familiarity in
feature space. When prior class information is available, we show how using Multiple
Discriminant Analysis (MDA) for generating a reduced dimensional subspace to op-
erate in rather than other common techniques such as Principal Components Analysis
(PCA) can make the novelty detection system more robust to issues associated with
high-dimensional feature spaces. In effect, this creates a lower dimensional subspace
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Figure 1: Sample result from online novelty detection algorithm onboard Crusher, a
large UGV. Chain-link fence was detected as novel (top and left, novelty shown in
red) with respect to the large variety of terrain and vegetation previously encountered.
After an initial stretch being identified as novel, subsequent portions of the fence are no
longer flagged (right) due to the algorithm’s online training ability. As with all future
similar images, insets within the top image show a first-person view (left inset) and the
classification of the environment by the perception system into road, vegetation, and
solid obstacle in blue, green and red respectively (right inset).

that truly captureswhat makes things novel. Additionally, our algorithm can be framed
as a variant of the NORMA algorithm, an online kernelized Support Vector Machine
(SVM) optimized through stochastic gradient descent, and therefore shares its favor-
able qualities [5]. Along with its anytime properties, this allows our algorithm to better
deal with the real-time demands of online tasks.

While this work was targeted toward mobile robotics applications, the approaches
here are more generally applicable to any domain which can benefit from online novelty
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detection.
The next section presents background on novelty detection techniques and some

example applications. Section3 presents our novelty detection algorithm, followed
by an explanation of how this technique can be applied to mobile robotics in Section
4, results from field testing on a large UGV in Section5 and concluding remarks in
Section6.

2 Novelty Detection

Novelty detection techniques (also referred to as anomaly or outlier detection) have
been applied to a wide range of domains such as detecting structural faults [6], abnor-
mal jet engine operation [7], computer system intrusion detection [8], and identifying
masses in mammograms [9]. In the robotics domain some have incorporated novelty
detection systems within inspection robots [10,11].

Novelty detection is often treated as a one-class classification problem. In training
the system sees a variety of “normal” examples (and corresponding features) and later
the system tries to identify input that does not fit into the trained model in order to
separate novel from non-novel examples. Instances of abnormalities or novel situations
are often rare during the training phase so a traditional classifier approach cannot be
used to identify novelty in most cases.

Most novelty detection approaches fall into one of several categories. Statistical or
density estimation techniques model the “normal” class in order to identify whether a
test sample comes from the same distribution or not. Such approaches include Parzen
window density estimators, nearest neighbor-based estimators, and Gaussian mixture
models [12]. These techniques often use a lower-dimensional representation of the data
generated through techniques such as PCA.

Other approaches attempt to distinguish the class of instances in the training set
from all other possible instances in the feature space. Schölkopf et al. [13] show how
an SVM can be used for specifically this purpose. A hyper-plane is constructed to
separate the data points from the origin in feature space by the maximum margin. One
application of this technique was document classification [14]. A noticeable drawback
of this approach is that it makes an inherent assumption that the origin is a suitable prior
for the novel class. This limitation was addressed by [15] by attracting the decision
boundary toward the center of the data distribution rather than repelling it from the
origin. A similar approach encloses the data in a sphere of minimal radius, using kernel
functions to deal with non-spherical distributed data [16]. These techniques all require
solutions to linear or quadratic programs with slack variables to handle outliers.

Another class of techniques attempts to detect novelty by compressing the resp-
resentation of the data and measuring reconstruction error of the input. The key idea
here is that instances of the original data distribution are expected to be reconstructed
accurately while novel instances are not. A simple threshold can then be used to detect
novel examples. The simplest method of this type uses a subset of the eigenvectors
generated by PCA to reconstruct the input. An obvious limitation here is that PCA
will perform poorly if the data is non-linear. This limitation was addressed by using a
kernel PCA based novelty detector [17]. Benefits of more sophisticated auto-encoders,

3



neural networks that attempt to reconstruct their inputs through narrow hidden layers,
have been studied as well [18].

Online novelty detection has received significantly less attention than its offline
counterpart. Since it is often important to be able to adjust the model of what is con-
sidered novel in real-time, many of the above techniques are not suitable for online use
as they require significant batch training prior to operation. While Neto et al. [10] re-
placed the use of PCA for novelty detection with an implementation of iterative PCA,
performance was still largely influenced by the initial data set used for training. Mars-
land proposed a unique approach that models the phenomenon of habituation where
the brain learns to ignore repeated stimuli [11]. This is accomplished through a clus-
tering network called a Grow When Required (GWR) network. This network keeps
track of firing patterns of nodes and allows the insertion of new nodes to allow online
adaptation.

Markou and Singh have written a pair of extensive survey articles detailing many
additional novelty detection applications and techniques [19,20].

The performance of the above-mentioned novelty detection approaches, however,
quickly deteriorates as the number of less relevant or noisy features grows. The dispro-
portionately high variance of many of these features make it difficult for many of these
algorithms to capture an adequate model of the training data and their effects quickly
begin to dominate more relevant features in making predictions. Our algorithm ad-
dresses this crucial limitation in cases where class information is available within the
training set while still being suitable for online use.

3 Approach

3.1 Formalization

The goal of novelty detection can be stated as follows: given a training setD =
{x}1...N ∈ X wherexi = {x1

i , . . . , x
k
i }, learn a functionf : X → {novel, not-

novel}. In the online scenario, each time stept provides an examplext and a prediction
ft(xt) is made.

We perform online novelty detection using the online density estimation technique
shown in Algorithm1. All possible functionsf are elements of areproducing kernel
Hilbert spaceH [21]. All f ∈ H are therefore linear combinations of kernel functions:

ft(xt) =

t−1
∑

i=1

αik(xi, xt) (1)

We make the assumption that proximity in feature space is directly related to sim-
ilarity. Observed examples deemed as novel are therefore remembered and have an
influence of familiarity on future examples through the kernel functionk(xi, xj). A
novelty threshold,γ, and a learning rate,η, are initially selected. For each examplext,
the algorithm accumulates the influence of all previously seen novel examples (line5).
If this sum does not exceedγ then the example is identified as novel and is remem-
bered for future novelty prediction (line7). Non-novel examples are not stored as they
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have minimal impact on future novelty computations (even though a coefficient of0 is
assigned in line9 for clarity, these examples are not stored). We suggest simply using
the Gaussian kernel with an appropriate varianceσ2:

k(xi, xj) = e−
‖xi−xj‖2

σ2 (2)

Algorithm 1 Online novelty detection algorithm

1: given: A sequence of featuresS = (xi)1...T ; a novelty thresholdγ; a learning rate
η

2: outputs: A sequence of hypothesesf = (f1(x1), f2(x2), . . .)
3: initialize: t← 1
4: loop
5: ft(xt)←

∑t−1

i=1
αik(xi, xt)

6: if ft(xt) < γ then
7: αt ← η

8: else
9: αt ← 0

10: end if
11: t← t + 1
12: end loop

3.2 Improved Dimensionality Reduction

Especially if the number of features is large, it may first be necessary to project the
high-dimensional inputxt into a lower-dimensional subspace more suitable for novelty
detection using distance metrics. The most common choice for this among dimension-
ality reduction (and novelty detection) techniques is PCA. PCA finds a linear trans-
formation that minimizes the reconstruction error in a least-squares sense. If subsets
of the features are redundant, noisy or are dominated disproportionally by a subset of
the training set, however, applying techniques such as PCA, or any unsupervised di-
mensionality reduction technique for that matter, may yield disappointing results as
precisely the most relevant directions for differentiation may be discarded in order to
reduce reconstruction error of a less relevant portion of the feature space.

Rather than optimizing for reconstruction error,discriminant analysisseeks trans-
formations that are efficient for discriminating between different classes within the
data. Multiple Discriminant Analysis, a generalization of Fischer’s linear discrimi-
nant for more than two classes, computes the linear transformation that maximizes the
separation between the class means while keeping the class distributions themselves
compact, making it useful for classification tasks [12].

We argue that when prior class information for the training set is available, using
MDA to construct a lower dimensional subspace using labeled classes not only op-
timizes for known class separability but likely leads to separability between known
classes and novel classes. In cases described earlier that result in poor performance
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Figure 2: All data points projected onto the subspace defined by the first three basis
vectors computed by PCA (top) and LDA (bottom). Only the first four classes were
used to construct the subspaces (’other man-made’ class was withheld as a test class).
The LDA-based projection clearly shows significantly more separation between the
new man-made class and the known classes, implying a more suitable subspace for
novelty detection.

when using PCA, MDA will largely ignore features that do not aid in class discrimi-
nation, instead focusing on the obviously differentiating features. The key observation
here is that novelty detection is about encountering new classes, so by using discrimi-
nating ability as the metric for constructing a subspace, one can capture the combina-
tions of features that make known classes novelwith respect to each otherand likely
generalize to previously unseen environments, in effect capturingwhat makes things
novel.

Experimental validation of this theory within the domain of mobile robotics is pre-
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sented in Sections4 and5.

3.3 Framing as Instance of NORMA

The NORMA algorithm is a stochastic gradient descent algorithm that allows the use
of kernel estimators for online learning tasks [5]. As with our algorithm,f is expressed
as a linear combination of kernels (1). NORMA uses a piecewise differentiable convex
loss functionl such that at each stept we add a new kernel centered atxt with the
coefficient:

αt = −ηl′(xt, yt, ft) (3)

Our algorithm can easily be framed as an online SVM instance of NORMA using
a hinge loss function as follows:

yt = γ (4)

l(xt, yt, ft) = max(0, yt − ft(xt)) (5)

Taking the derivative of (5), we get:

l′(xt, yt, ft) =

{

−1 if ft(xt) < γ

0 otherwise
(6)

As before, the gradient of our loss is non-zero only when the accumulated contri-
butions from stored examples are less than the novelty thresholdγ, signifying that the
example is novel. From (3) and (6) we then get:

αt =

{

η if ft(xt) < γ

0 otherwise
(7)

This is equivalent to the update steps in lines7 and9 of Algorithm 1, showing that
our algorithm can be framed as a specific instance of the NORMA algorithm.

NORMA produces a variety of useful bounds on the expected cumulative loss [5].
For novelty detection this directly relates to the number of examples that are expected
to be flagged as novel. This means we are competitive with respect to the bestf ∈ H
in terms of representing our sample distribution with the fewest number of examples.
This is to our advantage both from a computational perspective, since memory and pre-
diction costs scale with the number of remembered examples, as well as performance
since we want to minimize false positives that may be costly to handle.

3.4 Query Optimization

Without further measures, the potential number of basis functions stored by Algorithm
1 could grow without bound. NORMA deals with this issue by decaying all coeffi-
cientsαi and dropping terms when their coefficients fall below some threshold. This is
unsuitable for our application since we do not want to repeatedly flag similar examples
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Algorithm 2 Online novelty detection algorithm with query optimization

1: given: A sequence of featuresS = (xi)1...T ; a novelty thresholdγ; a learning rate
η; a maximum example storage capacityN

2: outputs: A sequence of hypothesesf = (f1(x1), f2(x2), . . .)
3: initialize: t← 1; ; n← 0
4: loop
5: i← 1
6: ft(xt)← 0
7: while ft(xt) < γ and i ≤ n do
8: ft(xt)← ft(xt) + αik(xi, xt)
9: i← i + 1

10: end while
11: if ft(xt) < γ then
12: αn+1 ← η

13: xn+1 ← xt

14: n← n + 1
15: i← i− 1 // i was incremented one extra time
16: end if
17: optimize sequence: Move (αi, xi) to front
18: if n > N then
19: Delete(αi, xi)i>n

20: n← N

21: end if
22: t← t + 1
23: end loop
At line 17, if ft(xt) = not-novel, i indexes the example that broke the novelty threshold. Other-
wise,i indexesxt.

as novel. Instead, we propose a modified anytime version of ouralgorithm that ensures
efficient and bounded computation (see Algorithm2).

This algorithm takes advantage of the fact that familiarity contribution to new
queries is often dominated by only a few examples. First, we can easily gain some effi-
ciency by only processing stored examples until we have reached the novelty threshold
(line 7). The key performance improvement, however, comes from the sequence op-
timization in line17. For each prediction, the stored example that breaks the novelty
thresholdγ, or the new novel example itself, is moved to the front of the list as it is more
likely to impact future queries2. This is a slight variation of the traditional problem of
dynamically maintaining a linear list for search queries for which the move-to-front
approach was proven to be constant-competitive, meaning no algorithm can beat this
approach by more than a constant factor [22]. As well as allowing us to bound the
number of stored examples (line19), this gives our algorithm an anytime property by
enabling it to as quickly as possible classify as much of the environment as possible as
not novel. When this algorithm is unable to run to completion due to time constraints,

2Another variant is to move stored exampleargmaxj∈[1,i]k(xt, xj) to the front of the list.
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Figure 3: Robot used for novelty detection testing (left) anda high-level illustration
perception system data flow (right). Features for novelty detection are taken from the
steps highlighted in red.

it will fail intelligently by generating false positives but never potentially dangerous
false negatives.

4 Application to Mobile Robotics

A natural application of our algorithm is to online novelty detection for a mobile robot.
The Crusher UGV of the UPI Program (shown in Figure3) that was used throughout
our tests is intended for operation in complex, outdoor environments, performing local
sensing using a combination of ladar and camera sensors [23]. The perception system
assigns traversal costs by analyzing the color, position, density, and point cloud distri-
butions of the environment [24,25]. A large variety of engineered features that could be
useful for this task are computed in real-time (see Figure4) and the local environment
is segmented into columns of20 cm3 voxels in order to capture all potentially rele-
vant information (see Figure5). Each voxel (tagged with its corresponding features)
is passed through a series of classifiers and combined with additional density-related
features to create a more compact set of intermediate features more suitable for traver-
sal cost computation. The system then interprets these features through hand-tuned or
learned methods to create a final traversal cost for that location in the world that can be
used for path planning purposes.

To perform novelty detection we used subsets of the initial raw features as well as
the intermediate classification and density features for each voxel. This vertical vox-
elization approach is effective for mobile robots since the presence of specific features
at certain vertical positions are highly relevant to their impact on traversal cost. For ex-
ample, solid objects at wheel height are likely to be small rocks while similar features
higher off of the ground are more likely to be trees or man-made objects. Similarly,
such spatial information is vital to effective novelty detection. This forced us to deal
with a relatively high-dimensional feature space (49features) as well as with the asso-
ciated issues described earlier.

We deal with this problem by using MDA with an extensive library of hand-labeled
examples across many environments and conditions to compute a lower dimensional
subspace more suitable for density estimation as described in the previous section.
Of the available classes, four were used to construct a three-dimensional subspace:
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Figure 4: Example raw engineered features from the UGV’s perception system used
by the novelty detection algorithm. NDVI (normalized difference of vegetation index)
is a useful metric for detecting vegetation.

Figure 5: Illustration of the perception system’s voxelization of vertical columns within
the environment and subsequent classification. The voxels here are actually much
smaller within the system but are enlarged for demonstration purposes. In the per-
ception system, each voxel is a20 cm3 cube and due to the size of the vehicle,10
voxels in the vertical direction are computed at each location in order to include all
potentially relevant information.
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road/dirt, rocks, bushes and barrels (see Figure6). A fifth class of examples corre-
sponding to various non-barrel man-made objects was withheld to verify the suitability
of this subspace (see Figure7).

Figure 2 shows the projection of all five classes onto the first three basis vectors
computed by PCA and LDA using the first four classes3. The LDA projections clearly
show better separation between the new set of man-made examples and the original
four classes. As expected, the most overlap occurs with the barrel class as barrels share
common properties with other man-made objects such as smooth surfaces, colors, etc.
Since we would desire these new examples to be identified as novel relative to the rest
of the classes, this separation implies that this is a more suitable subspace for use as a
similarity metric within a novelty detection system.

Because our algorithm is efficient for online use, the novelty model can start unini-
tialized or can be seeded with a sampling of examples used during training so that
it can identify areas that are novel and potentially unsafe to handle with the current
perception system.

5 Experimental Results

Our novelty detection algorithm (with query optimization) was tested using our large
UGV on an a natural outdoor environment to evaluate its online novelty detection per-
formance (the algorithm ran in real-time on logged data). The test environment tra-
versed by the robot consisted of combinations of road, grass and dirt, a large variety of
vegetation, a series of small barrels, several ditches, large heavily-sloped piles of rocks
and a long chain-link fence.

We projected all examples into the three-dimensional subspace generated by MDA
as described in the previous section from the first four hand-labeled classes (not using
the non-barrel man-made objects class). To best exhibit the online novelty detection
abilities of our algorithm, the model was initialized to contain no prior examples. As
the environment was explored, perception system features were averaged into0.8 cm2

grid locations for use as online batches of examples. Those that were identified as novel
relative to the current model (composed of everything previously identified as novel)
were incorporated into the model as described earlier.

The vehicle’s initial environment consisted of fairly open terrain with some light
scattered vegetation scattered on both sides. As expected, instances of such vegetation
were detected as novel the first few times they were seen (see Figure8).

The vehicle then encountered areas of much denser, larger vegetation. Initially,
a majority of such vegetation was identified as novel with respect to previous inputs
(see Figure9). As the vehicle continued navigating through similar vegetation, the
model adapted and no longer identified such stimuli as novel (see Figure10). Figure
11demonstrates this learning process through a series of overhead images of this initial
environment, identifying all future locations that are novel with respect to thecurrent
model. Output is shown at three points in time: near the beginning of navigation, just
before initial encounters with dense vegetation and after sensing a small amount of

3All features were initially rescaled to zero-mean, unit-variance.
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Figure 6: Examples of hand labeled class categories (bush, road / grass, rock, tree
trunk, tree branches, etc.)
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Figure 7: Sample hand labeled examples in the ’other man-made’ class used for vali-
dation of dimensionality reduction effectiveness. This category excluded instances of
barrels which were used as a separate class.

dense vegetation. It is clearly visible how the system adapts quickly, causing future
similar instances to no longer be flagged as novel.

Proceeding through the environment, the vehicle then encounters a series of plastic
barrels (see Figure12). As desired, the first several appear as novel with respect to
the large variety of vegetation previously seen while later barrels are no longer novel
due to their strong similarity to the initially seen barrels. Similarly, a long stretch
of a chain-link fence is identified as novel late in the course (see Figure1). Again,
the initial portions of the fence triggered the novelty detection algorithm while later
portions were no longer novel due to the algorithm’s adaptation. Additional examples
of novel instances identified during traversal appear in Figure13.

Overall, the novelty detection algorithm was able to identify all major unique ob-
jects (vegetation, barrels, fence, etc.) with a relatively small amount of false positives
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Figure 8: After initialization with no prior novelty model, various small vegetation was
detected as novel (identified in red).

Figure 9: Initial encounter with larger and denser vegetation results in a significant
amount of detected novelty (identified in red).
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Figure 10: Similar vegetation as that shown in Figure9 encountered a short time later.
Notice how almost all vegetation is no longer novel due to similarity to previous stim-
uli.

due to effective adaptation to the environment. When PCA was used to create the fea-
ture subspace, the lack of separability between classes resulted in either unacceptably
many false positives or false negatives, depending on parameter choices. As with any
algorithm, the success of this approach is heavily dependent on the quality of features.

Computation time comparisons between the two algorithms on this course highlight
the effectiveness of query optimization (see Figure14). While the average computation
time required per novelty query using Algorithm1 grows with the number of stored ex-
amples, Algorithm2 experiences temporary spikes in computation time as novel areas
are encountered but query optimization allows the algorithm to quickly adapt its or-
dering of examples in order to maintain a bounded computation throughout navigation
and allow effective anytime novelty prediction.
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Figure 11: Novelty of all future perception input using current novelty model on
vegetation-heavy terrain shown in Figures8, 9 and10at three points throughout traver-
sal. Robot’s past and future path is shown in light and dark green respectively and nov-
elty of terrain is indicated by a gradient from yellow (moderately novelty) to red (high
novelty). Robot is initialized without a prior novelty model.

6 Conclusion

Our algorithm addresses two significant limitations of most novelty detection approaches.
By using MDA for supervised dimensionality reduction rather than unsupervised tech-
niques such as PCA, this algorithm operates on a subspace that is more conducive
to viewing novelty as a distance metric and is therefore more resistant to many of
the issues associated with high-dimensional feature spaces. Additionally, this algo-
rithm’s adaptive abilities, computational bounds and anytime properties make it a log-
ical choice for many online novelty detection tasks. As robotic systems continue to
improve, such approaches can help capitalize on their abilities by acting as a safeguard
against the inevitable dangers of unfamiliar situations.
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Figure 12: Series of barrels encountered later in the course.The initial barrels are
detected as novel (red shade) even after significant exposure to a large variety of veg-
etation (top and left). Later barrels are no longer identified as novel due to online
training.
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Figure 13: Additional examples of novel instances identifiedduring later traversal (red
shade): first encounter with a ditch (left) and a large, heavily-sloped pile of rocks
(right).

Figure 14: Average computation in milliseconds per novelty query on3.2 GHz CPU
for Algorithm 1 (dashed red line) and Algorithm2 (solid blue line) over the previous
5 seconds throughout navigation. Computational complexity of Algorithm2 remains
bounded due to the order optimization step (line17). These timings do not include
feature computation and projection costs as they are identical under both algorithms.
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[7] P. Hayton, B. Scḧolkopf, L. Tarassenkoet al., “Support vector novelty detection
applied to jet engine vibration spectra,” inNIPS, T. K. Leen, T. G. Dietterich, and
V. Tresp, Eds. MIT Press, 2000, pp. 946–952.

[8] J. Ryan, M.-J. Lin, and R. Miikkulainen, “Intrusion detection with neural net-
works,” in Advances in Neural Information Processing Systems, M. I. Jordan,
M. J. Kearns, and S. A. Solla, Eds., vol. 10. The MIT Press, 1998.

[9] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady, “Novelty detection for the
identification of masses in mammograms,” inProceedings of the Fourth Interna-
tional IEEE Conference on Artificial Neural Networks, vol. 409, 1995, pp. 442–
447.

[10] H. V. Neto and U. Nehmzow, “Visual novelty detection with automatic scale se-
lection,” Robotics and Autonomous Systems, vol. 55, no. 9, pp. 693–701, 2007.

[11] S. Marsland, U. Nehmzow, and J. Shapiro, “On-line novelty detection for au-
tonomous mobile robots,”Robotics and Autonomous Systems, vol. 51, no. 2-3,
pp. 191–206, 2005.

[12] R. O. Duda and P. E. Hart,Pattern Classification. John Wiley and Sons, 2000.
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